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Abstract. We investigate, within the fluctuation-exchange approximation, a correlated-electron model for
Y2Ba4Cu7O15 represented by two inequivalent Hubbard layers coupled by an interlayer hopping t⊥. An
energy offset δ is introduced in order to produce a different charge carrier concentration in the two layers.
We compare several single-particle and magnetic excitations, namely, the single particle scattering rate, the
spectral function and the spin lattice as well as spin-spin relaxation times in the two layers as a function
of δ. We show that the induced interlayer magnetic coupling produces a tendency to “equalization” of
the magnetic properties in the two layers whereby antiferromagnetic fluctuations are suppressed in the
less doped layer and enhanced in the heavily doped one.The strong antiferromagnetic bilayer coupling
causes the charge carriers in the plane with larger doping concentration to behave similar to those of the
underdoped layer, they are coupled to. This effect grows for decreasing temperature. For high temperatures
or if both layers are optimally or overdoped, i.e. when the antiferromagnetic correlation length becomes
of the order or smaller than one lattice site the charge carrier and magnetic dynamics of the two layers
is disconnected and the equalization effect disappears. These results are in good agreement with NMR
experiments on Y2Ba4Cu7O15 by Stern et al. [Phys. Rev B 51, 15478 (1995)]. We also compare the
results with calculations on bilayer systems with equivalent layers as models for the constituent compounds
YBa2Cu3O7 and YBa2Cu4O8.

PACS. 74.72.h High-Tc compounds – 71.27.+a Strongly correlated electron systems; heavy fermions –
76.60.k Nuclear magnetic resonance and relaxation

1 Introduction

There is a large amount of consensus that the anoma-
lous properties of cuprate superconductors are caused by
the strongly interacting electrons within the CuO2 planes.
However, in particular the observation that the highest
superconducting transition temperatures belong to com-
pounds with more than one layer per unit cell initiated
various investigations of out-of-plane properties. The ob-
servation of a rather strong coupling between adjacent
layers has been made by inelastic neutron scattering [1]
(INS), nuclear magnetic resonance [2–5] (NMR) and indi-
rectly also in Raman scattering experiments [6]. Further-
more, the observation of a qualitatively different behavior
of the odd and even channel in INS including a sharp res-
onance feature, found solely for odd excitations [7] and
of a bilayer splitting of the Fermi surface found in an-
gular resolved photoemission experiments (ARPES) [8,9]
demonstrate that low energy excitations of cuprates are
affected by the presence of more than one layer per unit
cell. Related to these issues is the interesting question of
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the c-axis transport and the occurrence of a c-axis Joseph-
son plasma excitation [10,11], which may turn out to be
a new probe of the vortex statics and dynamics of the
superconducting state.

A very interesting perspective on the nature of the
coupling between CuO2-layers was offered by NMR exper-
iments by Stern et al. on Y2Ba4Cu7O15 (247). This ma-
terial has a variety of structural similarities to the exten-
sively studied YBa2Cu3O7 (123) and YBa2Cu4O8 (124)
systems. The main difference in the crystallographic struc-
ture of 123 and 124 is the double CuO chain in the lat-
ter. The compound 247 can be considered as a natural
multilattice, consisting of alternating 124 and 123 blocks.
The bilayers in 247 are correspondingly build up of one
CuO2 layer which belongs to the 123 block and one layer
of the 124 block. Based on the analysis of the NQR spec-
tra it turned out that the charge carrier content in these
nonequivalent adjacent layers is very close to that of the
related parent compounds of the two blocks, i.e. one plane
has a similar charge carrier concentration to the slightly
overdoped 123 system whereas the other layer corresponds
to the underdoped 124 system. Interestingly, the highest
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transition temperature (Tc = 95 K) is for 247, which has
to be compared with the 92 K for 123 and 82 K of the
124 system. The main experimental observations of ref-
erences [2,3] are the following: (i) the low-temperature
Knight-shift suppression for both planes is, despite their
different charge carrier concentration, similar and behaves
like in the underdoped 124 system, even though the high
temperature values of the Knight shift are the same as in
the corresponding 123 and 124 compounds. (ii) both 63Cu
spin lattice relaxation times of the two different planar
Cu-sites show a spin pseudogap in 1/63T1T , even though
it is barely present in the 123 parent compound itself. (iii)
the interplane transverse relaxation rate, as measured in a
spin-echo double resonance experiment (which character-
izes the interplane magnetic susceptibility) increases for
decreasing temperature faster than the intraplane relax-
ation rate. Thus, the main conclusions from these obser-
vations are that, for high temperatures, the two planes
are rather disconnected and behave similarly to their par-
ent compounds, whereas for decreasing temperatures, the
increasing interlayer magnetic coupling enforces even the
slightly overdoped plane to behave like an underdoped
system.

For a proper interpretation of these interesting exper-
imental data and, in a more broader context, for a better
understanding of the bilayer coupling in cuprate supercon-
ductors in general, it is essential to investigate to what ex-
tent one can describe the main trends of these data within
a model of coupled layers, only different by their charge
carrier concentration or whether one needs to make qual-
itatively new assumptions about the nature of the bilayer
coupling.

One promising approach for the description of bilayer
phenomena is based on a Hubbard Hamiltonian with lo-
cal repulsive Coulomb interaction, where the interplanar
coupling is caused solely by an interplane hopping ele-
ment t⊥. This model, restricted to the case of equivalent
layers (δ = 0), has been investigated within various tech-
niques [12–14]. Additional insight can be gained using a
self-consistent summation of bubble and ladder diagrams
(fluctuation exchange approximation). The main results
of these investigations [15–18] are enhanced antiferromag-
netic spin fluctuations due to layer coupling causing, in
bilayer systems as well, a dx2−y2 symmetry of the super-
conducting order parameter, a predominantly incoherent
low energy c-axis charge transport even though the bilayer
splitting stays intact, and an enhancement of the relative
strength of interlayer vs. intralayer coupling for decreasing
doping.

In this paper, we additionally consider the effect of an
energy offset δ, which produces a different charge carrier
concentration in the two Hubbard layers (cf. also Scalet-
tar et al. [19]). This is a suitable model to describe the
peculiarity of the 247 compound Y2Ba4Cu7O15, whose
bilayers are build up of one CuO2 layer belonging to an
YBa2Cu3O7 block and one to a YBa2Cu4O8 block. We
evaluate several single-particle and magnetic excitations,
namely, the single-particle scattering rate, the spectral

function and the spin lattice as well as spin-spin relax-
ation times in the two inequivalent layers as a function of δ
within the fluctuation-exchange approximation. We show
that the interlayer coupling produces a tendency to equal-
ization of the antiferromagnetic properties in the two lay-
ers whereby antiferromagnetic fluctuations are suppressed
in the less doped layer and enhanced in the heavily doped
one. This equalization effect turns out to be enhanced in
the presence of antiferromagnetic fluctuations in the sys-
tem and to be almost absent when the antiferromagnetic
correlation length becomes of the order or smaller than
one lattice site and to ultimately decrease for increasing
temperature. These results are in good qualitative agree-
ment with NMR experiments on Y2Ba4Cu7O15 by Stern
et al.[2,3]. We also compare the results with calculations
on bilayer systems with equivalent layers as models for the
constituent compounds YBa2Cu3O7 and YBa2Cu4O8.

A first theoretical investigation of the experimental
findings of reference [3] has been given by Millis and
Monien [20], who could determine the size of the inter-
layer exchange coupling from an analysis of the inter-
layer cross relaxation time. These authors also discuss
that the 41 meV excitation observed in superconduct-
ing YBa2Cu3O7 is a collective mode pulled down below
the superconducting gap by interactions, and that the ob-
served antisymmetry under interchange of planes follows
from the non-negligible value of J⊥. An analysis of the cou-
pling between an undoped layer and an underdoped one,
similar in spirit to ours, has been carried out by Scalettar
et al. [19]. These authors study the pairing mechanism,
which arises from the coupling of holes in doped layers to
spin fluctuations in the undoped layers in analogy with
the Ginzburg-type scenario for the coupling of electrons
through excitons in a doped semiconductor. However, it
turns out that magnetic fluctuations in the undoped layer
are strongly suppressed by the coupling with the doped
layer and superconducting correlations are reduced by the
interplane coupling at least at the temperatures accessi-
ble to the simulations. The study of the coupling between
a strongly antiferromagnetic and a doped subsystem has
some similarities with the “stripe scenario” where hole-
poor antiferromagnetic regions are considered to be in
contact with hole-rich superconducting regions.

The paper is organized as follows: in Section 2 we
present our model for coupled layers with different charge
carrier concentration and summarize the main concept
of the fluctuation exchange approximation, used for the
approximate investigation of the model. In Section 3 we
present our numerical results with particular emphasis to
the single-particle and magnetic fluctuations in the two
layers and focus on the anisotropy and on the tendency
of equalization of this effects. In order to make contact
with the experimental investigations on the 247 system,
we discuss at length the temperature dependence of var-
ious NMR quantities in Section 4. Finally our results are
summarized in Section 5.
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2 Model and technique

In order to describe the strong electronic correlations in
the high-Tc superconductors and the particularities of the
system Y2Ba4Cu7O15, consisting of two layers with differ-
ent charge carrier concentration, we use a system of two
two-dimensional Hubbard layers coupled by an hopping el-
ement t⊥. After Fourier transformation of the intraplane
sites into momentum space with in-plane momentum k,
the Hamiltonian reads:

H =
∑
l1,l2
k,σ

[Ho(k)]l1,l2 c
†
k,l1,σ

ck,l2,σ + U
∑
i

ni,↑ni,↓, (1)

where c†k,l1,σ creates a particle with spin σ at momentum
k in layer l1. Furthermore, ni,↑ is the density operator at
lattice site Ri and spin ↑, and Ho(k) the Hamilton matrix
for the noninteracting system

Ho(k) =

(
εk − µ t⊥
t⊥ εk + δ − µ

)
· (2)

In order to describe theoretically a different charge carrier
concentration in the two layers, we additionaly introduce
an on-site energy δ in the second layer, effectively modi-
fying its chemical potential. The planes are coupled solely
through a bare interplane hopping t⊥. Furthermore, the
bare energy dispersion in each plane is

εk =− 2t (cos kx + cos ky)− 4t′ cos kx cos ky

− 2t′′ [cos(2kx) + cos(2ky)] (3)

thus including second and third-neighbor hopping pro-
cesses (t′, t′′) to better model the Fermi surface for the
system under consideration. In the following calculation,
we always set t⊥/t = 0.4, U = 4t [17,18] and measure the
energies in units of the next-nearest neighbor hopping t.

A diagonalization of Ho(k) leads to the bonding and
anti-bonding bands of the noninteracting system

ε±k = εk +
δ

2
±

√
δ2

4
+ t2⊥. (4)

The single-particle excitations and the thermodynamic
properties of the interacting system are deduced from
the Green’s function G(k, iωm) obtained through Dyson’s
equation which for a two-layer system generalizes to a
(2× 2) matrix equation

G−1(k, iωm) = (iωm + µ)1−Ho(k) −Σ(k, iωm) . (5)

Approximations are introduced by the explicit choice of
the self-energy Σ(k, iωm). Here, we use the expression
for the self-energy given by the FLEX approximation [21]
without particle-particle vertex contributions. Within the
FLEX, the irreducible particle-particle vertex is solely the
repulsive Coulomb interaction U and consequently irrel-
evant. Interference effects between the particle-particle
and particle-hole channel, which may be of relevance for
an understanding of the pseudogap state of underdoped

cuprates at low temperatures, are beyond the scope of
this paper.

Introducing the shorthand notation k ≡ (k, iωm) and
q ≡ (q, iνn) for convenience, the matrix for the self-energy
Σll′(k) reads

Σll′(k) =
1

βN

∑
k′

Vll′(k − k
′)Gll′(k

′) , (6)

where β = 1
kBT

is the inverse temperature, and the ef-
fective interaction Vll′ results from an infinite series over
spin- and charge-fluctuations and is given by

V (q) =
3U2

2
(1− Uχ(q))−1χ(q)

+
U2

2
(1 + Uχ(q))−1χ(q) (7)

−U2χ(q).

Note, that V and χ are (2 × 2) matrices, i.e. matrix in-
version and multiplications have to be used. The bare
particle-hole bubble χll′(q) consists of dressed Green’s
functions

χll′(q) = −
1

βN

∑
k

Gll′(k + q)Gl′l(k). (8)

In equation (8), the Green’s functions are determined self-
consistently by solving the set of coupled equations equa-
tions (5–8). During the self-consistency cycle, we fix the
on-site energy δ and the particle number n1 = 1−x1 of the
first layer, while the chemical potential µ and the particle
number of the second plane n2 = 1 − x2 are determined
at each step. It turns out that the total particle number
n = n1 + n2 does not essentially depend on temperature,
which makes the physical interpretation of our numerical
results more straightforward. To avoid the uncertainties
related to a numerical analytical continuation of corre-
lation functions from the imaginary Matsubara to real
frequencies, we use the recently proposed real-frequency
approach to the FLEX approximation [22].

In the following, we shall mainly focus our attention
on two different parameter sets in order to mimic a situa-
tion with strong and weak antiferromagnetic fluctuations,
respectively. Specifically, we use a parameter set, for sim-
plicity labeled by “A”, with t′ = −0.38t, t′′ = −0.06t and
a second one, labeled by “B”, with t′ = −0.20t, t′ = 0.15t.
As will be shown below, the parameter set A corresponds
to a system with pronounced antiferromagnetic fluctua-
tions at low temperature, while B has much weaker ones.

3 Results

In order to investigate the effects of different charge carrier
concentrations in coupled bilayer systems, we start the
discussion with the δ dependence of the doping of the
second plane, x2(δ). Here, the doping of the first plane x1

and the on-site energy δ are independent variables for us,
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Fig. 1. Hole density of the second layer as a function of its
on-site energy δ for parameter sets A and B (described in the
text) and different dopings of the first layer (T = 0.02t).

while x2 comes out from the self-consistent calculation.
In Figure 1 we present x2(δ) for both parameter sets A
and B for different doping levels of the first plane as a
function of δ. From Figure 1 it can be seen that the hole
doping of the second plane is directly proportional to its
on-site energy δ. Note that the constant of proportionality,
i.e. the slope ∂x2/∂δ, is almost independent on t′, t′′ and
x1, because the particle number difference δn = n1 − n2

between both planes is mainly governed by the energy
dependence of the effective “chemical potentials” µ and
µ−δ. On the other hand, correlation effects do play a role
here, since the slope depends on U/t. Note that this energy
difference is determined self-consistently in our theory and
therefore does not only depend on δ, but varies, due to
self-energy renormalizations, also with the strength of the
Coulomb interaction U . The reason why we follow the
strategy of keeping the doping of the first plane fixed and
only change the doping of the second plane is that we want
to investigate a possible induced coupling effect between
the planes. The question is whether single-particle and
magnetic properties of the first plane are influenced by
the doping of the second plane.

In Figure 2, we show the real part of the diagonal el-
ements of the self-energy Σl,l(k, ω) with k = (π, 0) for
both layers and both parameter sets A and B. The dif-
ferent curves in each panel are for various on-site energies
δ. Figure 2a displays ReΣ for the first (less doped) layer
with parameter set A, i.e. for t′ = −0.38t, t′′ = 0.06t.
This figure shows that ReΣ11 indeed depends on δ al-
though the hole concentration is not changed by δ in the
first layer. This demonstrates that feedback effects due
to the interlayer coupling modify also the properties of
the plane where the charge carrier concentration is kept
constant. The dip-like structure for small δ is a precursor
of new quasiparticle states on the shadow of the Fermi
surface due to strong antiferromagnetic fluctuations. This
effect, which is strongest for the case of equivalent planes
(δ = 0), has been discussed in references [17,18]. An in-
crease of δ and hence of the total hole doping of the sys-
tem leads to a decrease of the interplanar antiferromag-
netic coupling and thus of the dip structure. Panel (b) in
this figure shows ReΣ22((π, 0), ω) for the second (heavily
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Fig. 2. Real part of the diagonal elements of the self-energy,
ReΣll(k, ω) for k = (π, 0) and x1 = 0.08, T = 0.02t. (a) and
(b) correspond to the parameter set A and (c) and (d) to the
set B, respectively.
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Fig. 3. Imaginary part of the diagonal elements of the self-
energy, ImΣll(k, ω) for k = (π, 0) and x1 = 0.08, T = 0.02t.

doped) layer. Since it is this plane which is primary altered
by δ the influence of changing the on-site energy δ is, as ex-
pected, considerably more pronounced. These results show
that the two layers are strongly connected and a change
in carrier concentration of the second layer strongly influ-
ences the single-particle properties of the first layer as well,
although the doping is unchanged here. However, whether
the two planes are connected or not depends on the values
of the parameters of the model. For example, a completely
different situation is found for the parameter set labeled
by B. For this choice, a variation of δ influences the sec-
ond layer (Fig. 2d), but has no effects on the self-energy
of the quasi-particles in the first layer (Fig. 2c), indicating
independent planes.

The connection between the two planes is also visible
in the scattering rates which are related to the imaginary
part of the self-energy and presented for both layers and
both parameter sets in Figure 3. For the imaginary part
of the self-energy, which is more sensitive to low energy
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Fig. 4. Real and imaginary part of the two diagonal elements
of the self-energy for parameter set A and for k = (0, 0).

excitations, we observe an even closer connection between
the two planes for parameter set A than for the real parts.
In addition, these figures demonstrate that precursors of
a spin density wave state around (π, 0), for low δ, are
rather incoherent due to the strong scattering rates at
these energies. Note also, that even the quasiparticles at
the chemical potential (ω = 0) suffer strong scattering, as
indicated by the rather large values ImΣll((π, 0), ω = 0).
Similarly to the real part, the changes in the scattering
rates caused by δ are rather moderate for parameter set
B, even in the second layer which is directly altered by δ
through its doping. Thus, both the real and the imaginary
parts of the self-energy suggest a tendency of equalization
between the layers for parameter set A, but not for B.

Nevertheless, the two planes turn out to be discon-
nected for regions far from the Fermi surface, e.g. close to
k = (0, 0), even for data set A. The real and imaginary
parts of the self-energy for parameter set A and k = (0, 0)
are presented in Figure 4. As can be seen in part (a) and
(c) of this figure, changes in the on-site energy δ of the
second plane have almost no effect on the first plane. The
two planes are thus connected only for momenta close to
the Fermi surface which are strongly affected by antiferro-
magnetic fluctuations at low energy and in particular for
hot quasiparticles states around (π, 0).

To further elucidate the momentum-resolved equaliza-
tion effects for parameter set A, we show in Figure 5 the
scattering rates at the Fermi energy for the first plane,
namely −ImΣ11(k, ω = 0) along the standard path in the
Brillouin zone, for different values of the on-site energy
δ of the second plane. This figure demonstrates that the
scattering rates are strongly modified at the Fermi surface
with strong effects in the regions close to (π, 0). On these
regions, the large number of states associated with the flat
bands produces strong scattering processes, whenever the
interaction connects the van Hove regions of the bonding
and antibonding band. We stress again that the variation
of the first plane is solely caused by its correlation with
the second plane since the doping of the first plane is kept
constant. The corresponding real part of the self-energy
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Fig. 5. Scattering rate in the first plane −ImΣ11(k, ω = 0)
along the standard path in the Brillouin zone for parameter
set A with x1 = 0.08, T = 0.02t, δ/t = 0.0, 0.2, 0.4. The arrows
indicate crossing of the anti-bonding (kabF ) and bonding (kbbF )
Fermi surfaces (see also Fig. 10).

0.3

0.4

0.5

0.6

0.7

0.8

-0.8 -0.4 0.0 0.4 0.8

ω/t

δ=0.0
δ=0.2
δ=0.4

0.3
0.4
0.5
0.6
0.7

-0.8-0.4 0.0 0.4

ω/t

Fig. 6. Effective interplane hopping teff
⊥ (k, ω) as a function of

the onsite energy δ for t⊥ = 0.4t, x1 = 0.08, T = 0.02t for
parameter set A. The inset shows the results for parameter set
B on the same scale.

(not shown) also reveals coupling effects for all k close
to kF .

We now address the question of how much the hop-
ping t⊥ between the planes is affected by the interac-
tion. Dyson’s equation (Eq. 5) suggests a momentum- and
energy-dependent effective interlayer hopping according to

teff
⊥ (k, ω) = t⊥ + ReΣ12(k, ω). (9)

Like the real and imaginary parts of the diagonal elements
of Σ(k, ω), this quantity is strongly affected for k ≈ (π, 0),
therefore, we restrict ourselves to this momentum.

In Figure 6 we show teff
⊥ (k, ω) for parameter set A at

a fixed temperature T = 0.02t for a series of on-site en-
ergies δ, while the inset presents the same quantities for
parameter set B. Looking at Figure 6, we observe that t⊥
is strongly renormalized close to the chemical potential
(ω = 0), and even more important, that the antiferromag-
netic fluctuations again enhance the interlayer connection,
in this case represented by the effective hopping teff. On
the contrary, t⊥ is essentially unrenormalized, indepen-
dently of the value of δ, in the presence of the weak an-
tiferromagnetic fluctuations in parameter set B (see inset
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of the figure). This result seems to stress once more the
fact that the planes are strongly connected for the “anti-
ferromagnetic” parameter set A, whereas they are essen-
tially independent for the parameter set B. We thus focus
our attention on parameter set A where the effects are

stronger. For δ = 0 the effective hopping teff
⊥ ((π, 0), 0) ≈

0.8t is roughly twice as large as the bare t⊥ = 0.4t. Thus,
the hopping between the planes is amplified rather than
blocked by electronic correlations.

Figure 6 also shows that the renormalization of t⊥ de-
creases with increasing on-site energy δ, which causes the
second plane to be less magnetic. However, an increase

of δ has a surprisingly weak effect on teff
⊥ ((π, 0), ω) when

compared with an increase of the temperature T , which is
shown in Figure 7. This strong temperature dependence
of teff
⊥ ((π, 0), ω) shown in the figure suggests that the in-

terlayer coupling is related to a small energy scale ω?. For
high temperatures, the thermal fluctuations destroy the
correlations on the small energy scale ω?.

Although the above discussion suggests an enhance-
ment of t⊥ due to interaction effects, the band split-
ting between the bonding and the anti-bonding band
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Fig. 9. Static spin susceptibility χzzll (q, ω = 0) along the stan-
dard path in the Brillouin zone for the two layers and both
parameter sets A and B. (T = 0.02t, x1 = 0.08).

∆(k) = ω+
k − ω−k goes in the opposite direction and is

reduced with respect to its bare value ∆o = 2t⊥, in agree-
ment with previous conjectures [23–25]. Figure 8 shows
the spectral functions A(k, ω) of the bonding and anti-
bonding band for k = (π, 0) and indicates a renormalized
band splitting ∆(π, 0) ≈ 0.4t = 0.5∆o. Thus, while the in-
terlayer hopping seems to be enhanced by about a factor
of 2 at low energies in the presence of strong antiferro-
magnetic fluctuations, the band splitting behaves in the
opposite way and it is reduced by about the same factor
for this parameter set. This different behavior between

teff
⊥ and ∆(k) is rather surprising, although it may be un-

derstood by the following argument. On the one hand,
the quasiparticle interplane hopping without residual in-
teraction, related to the off-diagonal energy term teff

⊥ , is
enhanced due to the fact that quasiparticle of two neigh-
boring sites on the two planes are nearly antiferromagneti-
cally ordered and thus have a larger amplitude to hop. On
the other hand, the whole hopping amplitude, related to
∆(k), is suppressed (by a larger factor than the enhance-

ment of teff
⊥ ), due to the Hubbard repulsion U .

Equalization effects between the planes are also ob-
served in two-particle quantities like the spin response as
deduced from the spin-spin correlation function. This is
given (in the layer representation) by

χzz(q, ω) = 2 [1− Uχ(q, ω)]
−1
χ(q, ω). (10)

The static spin-spin correlation function χzzll (q, ω = 0)
along the standard path (0, 0) → (π, 0) → (π, π) → (0, 0)
in the Brillouin zone is shown in Figure 9 for l = 1 and
for l = 2 for parameter set A and B.

In the case of parameter set A, the spin response
in both planes is strongly peaked at q = (π, π) indi-
cating considerable antiferromagnetism in the Hubbard
planes. However, even more important is the strong de-
pendence of χzz11(q, 0) on δ which is solely due to the inter-
plane coupling since the doping in the first plane is fixed.
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Fig. 10. Bonding and anti-bonding Fermi surfaces for param-
eter sets A (left panel) and B (right panel) with x1 = 0.08,
δ = 0.2, T = 0.02t.

In agreement with the effects observable in the single-
particle spectrum represented by the self-energy, this
clearly reveals a strong connection between the planes.
Figures 9a and 9b also show that the spin response is
very sensitive to a variation of δ and the antiferromag-
netism is suppressed if δ is increased. This is due to the
increasing hole concentration in the total system which
tears it away from half-filling where antiferromagnetism is
strongest. The static spin response for the data set labeled
by B is shown in Figures 9c and 9d. For this choice of pa-
rameters, the first plane is again completely disconnected
from the second one since a change of δ only influences the
spin response of the second plane while that of the first
plane is not affected at all. A clue towards the understand-
ing of the difference between the parameter sets A and B is
already found in the behavior of the spin response. Com-
paring Figures 9 (a, b) with Figures 9 (c, d) reveals a con-
siderable (one order of magnitude) smaller value for the
static spin response at (π, π) in the second case. Further-
more, the spin correlation length ξ, which is the inverse
of the half width at half maximum of χzz(q, 0) is much
smaller (of the order of 1 lattice spacing) for parameter
set B. This implies, as expected, that the interplane con-
nection is intimately related to strong antiferromagnetic
correlations in the planes.

The strength of the antiferromagnetic fluctuations is in
turn quite sensitive to the shape of the Fermi surface, espe-
cially if large regions of the Fermi surface can be linked by
the antiferromagnetic momentum Q = (π, π) [26]. Keep-
ing this in mind, the differences between parameter set A
and B are caused by their different Fermi surfaces. These
are shown in Figure 10. While the antibonding and bond-
ing Fermi surfaces associated with parameter set A are
closed around (0, 0) and (π, π), respectively, both Fermi
surfaces of B are closed around (π, π). Even more impor-
tant is the fact that large regions of both Fermi surfaces
in case A may be connected by Q. These regions are close
to (π, 0), i.e. close to the van Hove singularities in the
density of states, thus opening various channels for anti-
ferromagnetic scattering processes.

4 Relation to experiments

We now turn to the question how our theoretical calcula-
tions compare with experimental results. We thus concen-
trate our attention to NMR experiments on Y2Ba4Cu7O15

performed by Stern et al.[2,3]. Here, the experimentally
relevant quantities are the spin-lattice relaxation time T1

and the Gaussian contribution T2G to the nuclear spin-
spin relaxation time T2.

As pointed out by Shastry[27] and Mila and Rice[28],
the spin-lattice relaxation time T1 is related to the spin
susceptibility χzz , via the expression:

1

T1T
= lim
ω→0

1

2N

kB

~
∑
q

Fc(q)
Imχzz(q, ω)

~ω
, (11)

where Fc(q) is the form factor resulting from the Fourier
transform of the hyperfine interaction

Fc(q) = {Aab + 2B[cos qx + cos qy]}
2

. (12)

Thus, T1 probes the slope of the imaginary part of
χzz(q, ω) for ω → 0. In contrast to this, the Gaussian
component of the transverse relaxation time T2G depends
on the static susceptibility and is given by

T−2
2G =

0.69

128~2

[
1

N

∑
q

F 2
eff(q)χzz2(q, 0)

−

(
1

N

∑
q

Feff(q)χzz(q, 0)

)2
]

(13)

as pointed out independently by Takigawa [29] and
Thelen and Pines [30]. While equation (13) applies for the
diagonal elements of χzzll , i.e. for the in-plane relaxation
rates, the corresponding inter-layer relaxation rate 1/T 12

2G
needs not to be corrected by the self-interacting hyperfine
interaction and thus reads [5,20]:[

T 12
2G

]−2
=

0.69

128~2

1

N

∑
q

F 2
eff(q)

[
χzz12(q, 0)

]2
. (14)

The form factor Feff(q) in the last two equations is simply
obtained form equation (12) by replacing Aab with Ac. Al-
though we are studying inequivalent Hubbard planes, we
assume for simplicity that the hyperfine constants, which
are usually extracted from Knight shift experiments, are
identical in both planes. This is supported by the rather
moderate variations of the hyperfine coupling constants
for different cuprate superconductors. Quantitative differ-
ences may be obtained if one takes into account differ-
ent hyperfine constant, although the temperature depen-
dence should not change. To be specific, we adopt here
the values recently given in an analysis of NMR experi-
ments on YBCO and LSCO by Barzykin and Pines [31]
and set Aab = 0.84B,Ac = −4B and the energy scale
B = 3.82 × 10−7eV. Note, that since NMR probes the
local environment of the spins, all momenta q contribute
to the relaxation times although the main contributions
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Fig. 11. Temperature dependence of the Gaussian component
of the spin-spin relaxation rate T2G of a bilayer system consist-
ing of two different layers with doping x1 = 0.16 and x2 = 0.24,
respectively (δ = 0.4). For comparison, we show also the re-
sult for two bilayer systems with equivalent layers with doping
x1 = x2 = 0.16 and x1 = x2 = 0.24, respectively. The other pa-
rameters for all curves are: t′ = −0.38t, t′′ = −0.06t. The inset
shows the ratio T 22

2G/T
11
2G for the case of inequivalent layers.

come from the regions q ∼= (π, π). Hence, the behavior of
the NMR relaxation times are strongly influenced by the
antiferromagnetic response of the system.

We start the discussion with the transverse relaxation
time T2G. In Figure 11 we show 1/T2G as a function
of temperature for both planes of the system with inequiv-
alent layers in comparison with the corresponding data for
two corresponding bilayer systems with equivalent layers,
one with the same doping as the first layers and one with
the same doping as the second layer of the first system.
These results for the different layers are obtained with
equation (13) by substituting χzz with element (11) or
(22) from equation (10). The filled (open) symbols in this
figure are related to the system with inequivalent (equiv-
alent) layers. Furthermore, the squares represent the data
for planes with a hole doping of x = 0.16 and the bul-
lets planes with doping x = 0.24. From equation (13) it
is seen that a system with rather strong magnetism and
hence large values of χzz(q) exhibits large relaxation rates
1/T2G. This explains the differences between the layers
with x = 0.16 and x = 0.24, i.e. with different doping
levels, whereby the heavily doped plane shows a smaller
relaxation rate. The most striking result is that data for
a plane with a given doping also depend on whether that
plane is coupled with an equivalent one or with a more or
less doped one. The heavily doped plane (x2 = 0.24) of the
system with inequivalent layers shows stronger magnetic
fluctuations than the plane in the corresponding system
with equivalent bilayers (x1 = x2 = 0.24). Similarly, the
magnetism of the lower doped plane (x1 = 0.16) is reduced
with respect to the corresponding equivalent-layer system
(x1 = x2 = 0.16) due to the coupling to a stronger doped
plane. Thus, the magnetic fluctuations of the two inequiv-
alent planes with different carrier concentration tend to be
equalized by interplane coupling effects. A related effect
has been detected also in Quantum-Monte-Carlo simula-
tions of coupled Hubbard planes carried out by Scalettar
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Fig. 12. Effective interaction Veff(Q, ω = 0) for a system with
inequivalent layers (x1 = 0.08 and x2 = 0.11) in comparison
with the corresponding bilayer systems with x1 = x2 = 0.08
and x1 = x2 = 0.11. The upper panel shows the results for
parameter set A and the lower for B.

et al. [19], in which the two planes have different chemi-
cal potentials and one plane is adjusted to half filling. In
this case, the antiferromagnetic susceptibility of the half-
filled plane is reduced by the coupling with the doped
plane. The authors explain this by the fact that processes
in which holes hop from the doped layer into the half
filled one are energetically more favorable than virtual
hopping processes associated with the magnetic exchange
J ∝ t2/U .

The effects discussed above are also visible in other
quantities, like the effective interaction Veff(q, ω), which
is proportional to the spin susceptibility in our approx-
imation. For this quantity, we can see that the stronger
the antiferromagnetic fluctuations are in the planes, the
stronger is the tendency to equalization of the two planes.
In Figure 12a we show Veff(q = (π, π), ω = 0) as a func-
tion of temperature for the parameter set A as measured
in the two layers of the system with inequivalent layers.
In the same figure, we also report for comparison the data
for the two corresponding systems with equivalent layers
with their doping adjusted to the one of each of the two
layers of the first system. In Figure 12b we show the same
comparison for the systems with parameter set B. The dif-
ference is striking. For parameter set A, Veff of each of the
two layers in the system with inequivalent layers is con-
siderably different from Veff in the corresponding system
with equivalent layers and tend to be equalized for the two
layers. On the other hand, for the less antiferromagnetic
parameter set B, Veff calculated on a given layer of the
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system with inequivalent layers is essentially the same as
the one calculated on the system with the same doping
and equivalent layers.

Qualitatively, the experimental situation for the sys-
tem with inequivalent layers, Y2Ba4Cu7O15, appears to
be described by parameter set A. Indeed, NMR experi-
ments by Stern et al. [3] on 1/T2G for the two layers of
Y2Ba4Cu7O15 and for the two associated systems with
equivalent layers, YBa2Cu3O7 and YBa2Cu4O8, show the
same behavior as observed in Figures 11 and 12a, if one
identifies the behavior of 1/T2G with the one of Veff. Both
experimental and theoretical results show a strong in-
crease of 1/T2G as the temperature is lowered. However,
we do not obtain the decrease of 1/T2G below Tsg ≈ 100 K
which is attributed to the opening of a gap in the spin
excitation spectrum, since this region is probably unac-
cessible by our approximation. Another experimental ob-
servation is that the spin-lattice relaxation rate 1/T2G

has the same temperature dependence in the two planes
of Y2Ba4Cu7O15. This has been deduced from the ratio
R = (1/T 124

2G )/(1/T 123
2G ) of 1/T2G in the two planes, which

turned out to be temperature independent and approxi-
mately R ≈ 1.4–1.5. Since the 124 plane in the coupled
layer structure of Y2Ba4Cu7O15 is the one with lower dop-
ing, the CuO2-layer from the 123 block corresponds to
the second plane in our theoretical study. The calculated

values for R = T
(22)
2G /T

(11)
2G are presented in the inset of

Figure 11. It turns out that R is almost independent of
the temperature T , in agreement with the experimental
finding.

In fact, a systematic study shows that the ratio R is
mainly controlled by the on-site energy δ and thus by the
difference of particle densities, δn = n1 − n2, between
the two planes. On the other hand, the temperature de-
pendence of R(T ) is sensitively related to the doping of
the first layer: for low doping x1, R(T ) shows an upturn
with decreasing T while it is essentially constant for large
values of x1 (see Fig. 14). Thus, the experimental data
for R(T ) imply a rather large doping x1 of the first layer
in connection with a large on-site energy difference δ or,
equivalently, filling difference δn. On the other hand, the
doping cannot be too large because otherwise no tendency
to equalization would be observable. An optimal choice
for the doping levels in the coupled system turns out to
be x1 = 0.16 and x2 = 0.24, as shown in Figure 11.

For the same parameter choice, we compare the tem-
perature dependence of the in-plane relaxation rate 1/T 22

2G
with the inter-plane one 1/T 12

2G, which is calculated us-
ing equation (14). The latter quantity has been mea-
sured using NQR-SEDOR experiments [4], as suggested
by Monien and Rice [5]. The apparent feature in these ex-
periments is that the inter-plane relaxation rate increases
faster for decreasing temperature than the in-plane one,
as seen from the temperature dependence of the ratio
RSEDOR(T ) = T 22

2G/T
12
2G. Our theoretical calculations dis-

played in Figure 13 clearly reproduce the qualitative be-
havior observed experimentally. However, we do not ob-
serve the saturation effect for very low temperatures as
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seen in experiments and which is most probably due to
the opening of the spin gap.

A similar study of the spin-lattice relaxation time T1

on Cu-sites shows less clear coupling effects between the
two layers, both theoretically and experimentally. The ex-
perimental results [2] show almost no difference between
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the 1/(T1T ) data for the 123/124 layers in Y2Ba4Cu7O15

and the corresponding layers in the YBa2Cu3O7 and
YBa2Cu4O8 systems, respectively. Deviations can be seen
only for rather low temperatures T . Tsg. Above Tsg,
the ratio R1(T ) = (T1T

123)/(T1T
124) deduced from the

experiments is again essentially temperature independent
and is about 1.4. In Figure 15 we show the calculated re-
sults for 1/(T1T ) obtained with equation (11) for the same
parameters as in Figure 11. Here, we observe that the cou-
pling effects between the planes are not as strong as for the
spin-spin relaxation rate 1/T2G. In fact, especially for the
plane with the larger doping (x = 0.24) 1/(T1T ) seems to
deviate from the value of the system with equivalent lay-
ers only for rather small temperatures T/t ≈ 0.05. On the
other hand, the plane with lower doping (x = 0.16) shows
deviations already for higher temperatures T/t ≈ 0.08.
Even more surprising is the result for the ratio R1(T ),
shown in Figure 11. Here, the plane with the higher dop-
ing shows a larger spin-lattice relaxation rate 1/(T1T ),
in contradiction with the simple expectation that lower
doping should result in stronger antiferromagnetic fluctu-
ations. The expected value R1 > 1 is restored only for low
T . 0.04t in our calculation. The deviation from the ex-
perimental ratio R1 ≈ 1.4 may be caused by the incorrect
assumption that the hyperfine interaction constants are
the same in both planes.

Finally, we have calculated the relaxation times 17T1

and 17T2G on oxygen sites. Like the corresponding relax-
ation times on copper sites, these quantities are related to
the slope for ω → 0 of the imaginary part of the spin sus-
ceptibility, and by its real part, respectively. The appropri-
ate form factor which enters equations (11,13) and which is
given by 17F (q) = 2C2[1+0.5

(
cos(qx)+cos(qy)

)
] with two

different constants for T1T and T2G, suppresses scattering
events transfering momentum q = (π, π) related to mag-
netic fluctuations and instead favors those with q around
(0, 0). The spin-lattice and spin-spin relaxation times on
oxygen sites hence mainly probe the center of the Brillouin
zone. We already know from the static spin susceptibility
shown in Figure 9 that the equalization effects are much
weaker for q ∼= (0, 0) as compared with (π, π). This weaker
connection between the layers at q ∼= (0, 0) is equally pro-
nounced for the dynamical susceptibility and thus leads
to the oxygen relaxation rates 1/(17T1T ) and 1/(17T2G)
shown in Figure 16. Here, we find that the layers of the
system consisting of two inequivalent layers behave almost
like the corresponding planes in the systems with equiva-
lent layers and the two inequivalent layers are essentially
disconnected. We thus predict that, within a purely mag-
netic scenario, experimental measurements of the oxygen
relaxation times in 123 and 124-layers of Y2Ba4Cu7O15

should behave, as a function of temperature, like those of
the corresponding layers in YBa2Cu3O7 and YBa2Cu4O8,
respectively. In other words, if one would detect a different
behavior of 1/(17T1T ) in Y2Ba4Cu7O15 compared to the
two parent compounds, it would be a strong indication for
a nonmagnetic coupling of the two layers.
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Fig. 16. Temperature dependence of the spin-lattice relax-
ation rates 1/(17T1T ) and of the spin-spin relaxation rates
1/(17T2G) on oxygen sites. Like in Figures 11 and 15, the re-
sults for a system with inequivalent layers are compared with
the corresponding systems with equivalent layers and the same
doping (the parameters are the same as in Fig. 13).

5 Conclusions

In summary, we have studied a microscopic model con-
sisting of two inequivalent Hubbard planes which are con-
nected by an interlayer hopping t⊥. We have shown that
magnetic and single-particle fluctuations of the two layers
are connected and tend to be equalized if the antiferro-
magnetic fluctuations within the layers are strong. If the
antiferromagnetic correlation length is less than 1–2 lattice
spacings, which happens for high temperatures, large dop-
ing or bandstructure parameters with inefficient magnetic
coupling between the two Fermi surface sheets, we find
that the two inequivalent layers are disconnected and keep
their individual properties. However, once the antiferro-
magnetic correlations in the layer with smaller charge car-
rier concentration is sufficiently large, the single-particle
excitations for momenta close to the Fermi surface and,
in particular, around the hot-spots as well as the mag-
netic excitations of the two layers are strongly connected.
The whole system reacts, despite its inhomogenious charge
density, magnetically as a single system. In this case, the
interlayer antiferromagnetic susceptibility, measured by
T 12

2G, increases for decreasing temperatures more strongly
than the individual inplane susceptibilities. These trends
are in agreement with the experimenmtal observation by
Stern et al. [4] demonstrating that it is sufficient, for an
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understanding of the magnetic interlayer coupling, to use
a single-particle interlayer hopping element. Furthermore,
we expect from our analysis of the oxygen NMR relax-
ation rate that, in distinction to the Cu-relaxation rates,
the magnetic connection between the two layers will barely
be visible, even for strongly underdoped systems. This
phenomenon could be used to separate the small contribu-
tions due to antiferromagnetic correlations from the dom-
inant, rather conventional, contribution of the q ≈ 0 dy-
namical spin susceptibility. Finally, in a futher step, based
on the findings of this paper, it is of interest to investi-
gate the behavior of two coupled, but inequivalent layers
in the superconducting state (some work in this direction,
although at much higher temperatures, has been carried
out in reference [19]). This may reveal, why the material
Y2Ba4Cu7O15 exhibits a higher Tc than both of the cor-
responding parent compounds it consists of.
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ZAM in Jülich and the LRZ in Munich.

References

1. J. Tranquada, P. Gehring, G. Shirane, S. Shamoto, M.
Sato, Phys. Rev. B 46, 5561 (1992).

2. R. Stern, M. Mali, I. Mangelschots, J. Roos, D.
Brinkmann, Phys. Rev. B 50, 426 (1994).

3. R. Stern, M. Mali, J. Roos, D. Brinkmann, Phys. Rev. B
51, 15478 (1995).

4. R. Stern, M. Mali, J. Roos, D. Brinkmann, Phys. Rev. B
52, R15734 (1995).

5. H. Monien, T.M. Rice, Physica C 235–240, 1705 (1994).

6. See, e.g., D.K. Morr, A.V. Chubukov, A.P. Kampf,
G. Blumberg, cond-mat/9512131, and references therein.

7. P. Bourges, H.F. Fong, L.P. Regnault, J. Bossy, C. Vettier,
D.L. Milius, I.A. Aksay, B. Keimer, Phys. Rev. B 56, R11
439 (1997).

8. M. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen,
D. Bonn, R. Liang, W. Hardy, Phys. Rev. B 57, 6090
(1998).

9. M. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen,
D. Bonn, R. Liang, W. Hardy, Phys. Rev. B 57, 6107
(1998).

10. P.W. Anderson, Science 279, 1196 (1998).
11. A.J. Leggett, Science 279, 1157 (1998).
12. N. Bulut, D.J. Scalapino, R.T. Scalettar, Phys. Rev. B 45,

5577 (1992).
13. N. Bulut, D. Scalapino, Phys. Rev. B 53, 5149 (1996).
14. R. Hetzel, W. v.d. Linden, W. Hanke, Phys. Rev. B 50,

4159 (1994).
15. T. Dahm, L. Tewordt, Physica C 253, 334 (1995).
16. T. Dahm, D. Manske, L. Tewordt, Phys. Rev. B 54, 6640

(1996).
17. S. Grabowski, J. Schmalian, M. Langer, K. Bennemann,

Phys. Rev. B 55, 2784 (1997).
18. S. Grabowski, J. Schmalian, K. Bennemann, Physica B

230, 948 (1997).
19. R.T. Scalettar, J.W. Cannon, D.J. Scalapino, R.L. Sugar,

Phys. Rev. B 50, 13419 (1994).
20. A.J. Millis, H. Monien, Phys. Rev. B 54, 16172 (1996).
21. N.E. Bickers, D.J. Scalapino, Ann. Phys. 193, 206 (1989).
22. J. Schmalian, M. Langer, S. Grabowski, K.H. Bennemann,

Comp. Phys. Comm. 93, 141 (1996).
23. D.G. Clarke, S.P. Strong, Adv. Phys. 46, 545 (1997).
24. H. Monien, N. Elstner, A.J. Millis, cond-mat/9707051.
25. E. Arrigoni, Phys. Rev. Lett. 80, 790 (1998).
26. G. Hildebrand, E. Arrigoni, C. Gröber, W. Hanke, to ap-
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